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Let OM L denote the class of all orthomodular lattices and C denote the class of those
that are commutator-finite. Also, let C; denote the class of orthomodular lattices that
satisfy the block extension property, C those that satisfy the weak block extension prop-
erty, and Cs those that are locally finite. We show that the following strict containments
hold: CcCy cC, CcCs Cc OML.
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1. INTRODUCTION

In the concluding remarks of Bruns and Greechie (1990) and in Legan (1998),
the authors discuss several classes of orthomodular lattices. Continuing that dis-
cussion, we adopt the following notation. Let us denote the class of all orthomod-
ular lattices by OML and the class of commutator-finite orthomodular lattices
by C. Additionally, we denote the class of orthomodular lattices that satisfy the
block extension property by C;, the class of those that satisfy the weak block
extension property by C,, and the class of those that are locally finite by C3. Af-
ter making the appropriate definitions, we give two examples and refer to two
others to show that these classes are ordered by strict containment (C); namely,
ccCicCclCscOML.

An orthomodular lattice (abbreviated, OML) is an ortholattice L satisfying
the condition thatifa < band b A @’ = 0, then a = b. A commutator in an OML
L is an element of the form (a Vb)) A (a VvV b') A (a’ vV b) A (@’ v b'). A maximal
boolean subalgebra of an OML L is called a block of L. An OML is commutator-
finite (respectively, block-finite), if it contains only finitely many commutators
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(respectively, blocks). The set of all blocks of L is denoted by 2, . A subalgebra
M of an OML L is said to be full when 2, C 2, .

We say that an OML L has the block extension property (abbreviated, BEP)
if, for every finite set 5 of blocks of L, there exists a block-finite full subalgebra
S of L containing |_J 8. Also, we say that an OML L has the weak block extension
property (abbreviated, WBEP) if, for every finite set ‘B of blocks of L, the subal-
gebra, ['({J B), of L generated by the elements of | % is block-finite. Finally,
we call an OML L locally finite if every finite set of elements of L generates a
finite subalgebra of L. Our discussion is always within an orthomodular lattice.
We assume a fair amount of familiarity with the basic notation, terminology, and
results of orthomodular lattice theory, and refer the reader to the bibliography for
details.

In order to prove that a commutator-finite OML L is locally finite, Bruns and
Greechie first show that every commutator-finite OML L has the block-extension
property. Consequently, each finite generating set in L, since it is contained in the
union of a finite set of blocks of L, is contained in a full block-finite subalgebra of
L. Hence, by the main result of Bruns (1978), which states that block-finiteness
implies local-finiteness, each such set generates a finite subalgebra of L. In other
words, commutator-finiteness implies local-finiteness. So, the BEP plays a crucial
role in this result. It is clear that every OML that has the BEP also has the
WBERP since subalgebras of block-finite OMLSs are again block-finite. Moreover,
the WBEP also implies local finiteness in the same way as does the BEP.

In the concluding remarks of Bruns and Greechie (1990), the authors pose
several questions. The question we answer here is whether or not the BEP is
strictly stronger than the WBEP. The example given here shows that it is. We also
give an example to show that the class of OMLs possessing the WBEP is strictly
contained in the class of locally finite OMLs.

2. AN OML POSSESSING THE WBEP BUT NOT THE BEP

In Fig. 1, we have an example of an OML L; which possesses the WBEP,
but not the BEP. The pattern is repetitive; here is the listing of the atoms
in each block. They are, for each i € N, {a;;, b;j, a; j+1}, j =1,2,3,4,5, and
{ais, bis, ai1}, comprising the infinitely many hexagons, and {a;1, ¢i1, ait+1.2},
{ain, cio, di, aiv1,4), {ais, ¢i3, aiv1,6}, {@ia, Cias @12}, {ais, ¢is, di,  ai114), and
{ais, ci6,ait1,6}, comprising the atoms of the blocks between the ith and the
(i + )™ hexagon immediately to its right. Each block in any hexagon and all
others except the two that contain d;, for all i € N, are copies of 23 The two that
contain d;, for all i € N, are copies of 2*. The drawing completely describes the
OML L;.

Firstly, we must show that L is an OML. We observe that it is not a Greechie
space by considering the atoms d; and a;4; 4, which both appear in the same
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Fig. 1. L, an example having the WBEP but not the BEP.

two blocks, one having as its set of atoms {a;», ¢z, d;, a;+1,4} and the other
{ais, ¢is, d;, aiy1.4}, for all i € N. However, we can prove that L; is an OML
by using orthogonality space techniques which we now present.

To do this, we first make the following definitions. An ordered pair (X, L)
is called an orthogonality space if X is a non-empty set and L € X x X is an
anti-reflexive, symmetric binary relation on X; that is, for all x, y € X, x L x fails,
and x_Ly implies that y L x.

Let (X, L) be an orthogonality space. If M C X, then we define M=, called
the orthogonal of M, by the equation M+ := {x € X|x_Lm for every m € M}.
D C X is called a L-(sub)set in case dyLd, holds whenever d,d, € D with
di # d.

If M C X, we say that M is orthogonally-closed (abbreviated, L -closed) in
case M = M*+. We define P+(X) by the equation P+(X) := {M € P(X)|M is
L-closed}.

Let atL denote the set of atoms of L. Let X = arL;. These are represented
by the vertices in Fig. 1. For x, y € X, x Ly if and only if x # y and both x and
y are on a common line in Fig. 1. The maximal | -sets determine the lines in the
Greechie diagram of L: these are in one-to-one correspondence with the blocks
of L 1.

The following results then hold. The poset (P+(X), C) is a complete ortho-
lattice under the orthocomplementation M — M+; and P+(X) is an OML if and
only if, forevery M € P+(X) and for every maximal L-subset D of M, D+ = M
holds. (See Kalmbach, 1983, page 262.)

We now use these results to show that P-(X) is an OML. To accomplish
this, we give an exhaustive accounting of the 1 -closed subsets M C X and their
maximal | -subsets (“bases”) D C M; the raeder is asked to verify that for all
such inclusions in Table I, where, for each of these, i € N and a € at L, we have
DT = M. The meaning should remain clear in view of the preceding paragraphs.
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Table I. Orthogonally Closed Subsets and Their “Bases”

M =Mt DCM
% @
gt =Xx The atoms in just one of any of the blocks
{a} {a}
{a}* The atoms in just one of any of the blocks
which contain a, except for a itself
{di, aiy1.4} {di, ai+1.4}
{di, air1.4)t = {aiz, cio, ais, cis} {ain, cia}, {ais, cis}
{ai2, ait1.4} {ai2, ai+1.4}
{aiz, aip1,43" = {ci2, di} {ci2, di}
{aiz, di} {aiz, d;}
{aiz, di}t = {ci2, aiv1,4} {ci2, @it1.4}
{ais, ai+1.4} {ais, ai+1.4}
{ais, aiy1.4)" = {cis. di} {cis, di}
{ais, di} {ais, di}
{ais, di}= = {cis, aiy1.4) {cis, ai+1,4}

We now define a sequence of subalgebras which are useful for showing that
the WBEP holds, but the BEP does not. For i € N, define ¢; to be d; V a;4 4; and
define M; < L; to be the union of all blocks to the left of the ith hexagon, the
ith hexagon, {a;1, ¢;1, aiy1,2}, {ai3, ¢i3, Giy1,6}, {aia, Cia, aiy12}, {ais, cis, ait1,6}
{aiz, ciz, e}, {ais, cis, i}, {aiv1,1, biy1,1, dit12}, and {ai116, bit1,6, Giy1,1}. Then
each M, is a block-finite subalgebra of L; which is not full. In Fig. 2, we show
the Greechie diagram of M.

To show that L has the WBEDP, let 5 be any collection of finitely many blocks
of L. Pick j € N so that all of the blocks in B are to the left of the jth hexagon.

15 bl

o e O

. aqq e )

e :r:i‘iﬂq_gla @ E‘ f‘ G*ﬁ az1
Big ]

—— — 4 -
b1 — Fastiy (| rbaq
__J;:J—ﬂl——:;:*-h — ,-"]I '-\-hq_\_\_
e -
aqa £ e bqz g 2p ) :I },."' Y
—cf - P iy a1 —
, e ~ aqz r ra -
b, el = o3 K azz?
\'k “'I:_ ——— _J _.f"’l ‘(2
n, — — -
b, 13 E ;‘ -
e 14 T

Fig. 2. M, a block-finite subalgebra of L; which is not full.
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Since ( JBC M ; < L, and subalgebras of block-finite OMLs are block-finite, it
follows that I'(|_J B) is block-finite.

To verify the failure of the BEP, choose B := {{a2, b12, a13}, {ais, bis, ais}}
and observe that I'(| B) = M. Observe that any full subalgebra of L; that con-
tains |_J B must, therefore, contain {ay,, c12, di, axs} and {ays, ¢is, dy, az4}. How-
ever, ['((J B) U {a12, c12, d1, axa} U {ass, 15, di, aza}) = M. In a similar way, if
any full subalgebra contains M;, then it also contains M;, for all i > 2. Hence,
the only full subalgebra containing this finite choice of blocks is L itself. Since
L is not block-finite, it does not have the BEP.

3. ALOCALLY FINITE OML NOT POSSESSING THE WBEP

In Fig. 3, we present an example of an OML L, which is locally
finite but does not possess the WBEP. Observe also that L, possesses a
collection of four infinite blocks, B :={A, B, C, D}. The blocks of L,
have as sets of atoms {a;j, b;j,a;j+1}, j =1,2,3,4,5, and {ass, bis, air},
where i € N, comprising the infinitely many hexagons, and atA =
{b13, b1, bas, b2y, b33, b3g, bas, ban, ...}, at B = {b11, ba1, b3y, ...}, atC = {by,
b24, b34, . .}, andatD = {b15, b127 b23, bz(), b35, b32, b43, b46, .. .}; these comprise
the four infinite lines each of which intersects each hexagon in one (for B and C)
or two (for A and D) atoms. Each block in any hexagon is a copy of 23, and each
of the four infinite blocks is a copy of the power set of the integers, P(Z).

The second example, L,, is a Greechie space since any two lines in its
Greechie diagram intersect in at most one point. Recall that a loop of order n in a
Greechie space is a sequence of n lines where each line intersects the successive
line in one point, non-successive lines do not intersect, and the last line intersects
the first line in one point also. Note that L, satisfies the Loop Lemma condition
for being an OML, which simply requires that there are no loops of order less than
five.

The drawing completely describes the OML L,. Moreover, L, is locally finite
and does not have the WBEP for the following reasons.

Firstly, for any finite collection K of elements of L, there exists n € N such
that only the four infinite blocks and the first n hexagons contain elements of
K. However, an atom from a hexagon further to the right than the nth hexagon
may be generated by elements that are only in the same infinite block. Now, each
infinite block of L, contains finitely many elements of K, and blocks are locally
finite. Moreover, two elements from two different infinite blocks together do not
generate a new element, except possibly if they are also from the same hexagon.
Also, an element x from a given hexagon and another element y from an infinite
block to which x does not also belong do not generate a new element, except
possibly an element in the given hexagon. So, there exists m € N with m > n such



Greechie and Legan

356

JAGM 2y ssassod jou se0p Jey) TINQ AUy A[[edo] & jo ojdwexa ue ‘T7 *¢ ‘310




Three Classes of Orthomodular Lattices 357

that the subalgebra generated by K, I'(K), includes elements from only the first m
hexagons and finite subsets of the four infinite blocks. So, I'(K) is finite. Hence,
L, is locally finite.

Secondly, B := {A, B, C, D} is a finite collection of blocks whose union
generates L, itself, which has infinitely many blocks. Therefore, L, does not have
the WBEP.

It is, of course, true that the horizontal sum of infinitely many copies of OMLs
possessing the BEP and having a commutator poset which is not contained in {0, 1}
possesses the BEP but is not commutator-finite. In particular, the horizontal sum
of infinitely many copies of G, (the 12-element OML having two 8-element
blocks) is the simplest example of such an OML. Let us denote this example by
N;. Furthermore, let us denote the example from Greechie (1977) (which may
also be found in Harding, 2002) by N,. From our Introduction, we know that
C CC CC, CC3 € OML . However, the existence of Ny allows us to conclude
that C; z C, of L, that C, g Cy, of L, that C3 g (>, and of N, that OML g Cs.
Therefore, C C C; c C, € C3 € OML.
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